On polynomial representation functions for multivariate linear forms
نویسنده
چکیده
Given an infinite sequence of positive integers A, we prove that for every nonnegative integer k the number of solutions of the equation n = a1 + · · ·+ak, a1, . . . , ak ∈ A, is not constant for n large enough. This result is a corollary of our main theorem, which partially answers a question of Sárközy and Sós on representation functions for multivariate linear forms. Additionally, we obtain an Erdős-Fuchs type result for a wide variety of representation functions.
منابع مشابه
Numerical Solution of Second Kind Volterra and Fredholm Integral Equations Based on a Direct Method Via Triangular Functions
A numerical method for solving linear integral equations of the second kind is formulated. Based on a special representation of vector forms of triangular functions and the related operational matrix of integration, the integral equation reduces to a linear system of algebraic equations. Generation of this system needs no integration, so all calculations can easily be implemented. Numerical res...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملKernel Based Algebraic Curve Fitting
An algebraic curve is defined as the zero set of a multivariate polynomial. We consider the problem of fitting an algebraic curve to a set of vectors given an additional set of vectors labelled as interior or exterior to the curve. The problem of fitting a linear curve in this way is shown to lend itself to a support vector representation, allowing non-linear curves and high dimensional surface...
متن کاملAlgebraic Curve Fitting Support Vector Machines
An algebraic curve is defined as the zero set of a multivariate polynomial. We consider the problem of fitting an algebraic curve to a set of vectors given an additional set of vectors labelled as interior or exterior to the curve. The problem of fitting a linear curve in this way is shown to lend itself to a support vector representation, allowing non-linear curves and high dimensional surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 34 شماره
صفحات -
تاریخ انتشار 2013